A Review of Reliability in Gate-All-Around Nanosheet Devices
Abstract
The gate-all-around (GAA) nanosheet (NS) field-effect-transistor (FET) is poised to replace FinFET in the 3 nm CMOS technology node and beyond, marking the second seminal shift in device architecture across the extensive 60-plus-year history of MOSFET. The introduction of a new device structure, coupled with aggressive pitch scaling, can give rise to reliability challenges. In this article, we present a review of the key reliability mechanisms in GAA NS FET, including bias temperature instability (BTI), hot carrier injection (HCI), gate oxide (Gox) time-dependent dielectric breakdown (TDDB), and middle-of-line (MOL) TDDB. We aim to not only underscore the unique reliability attributes inherent to NS architecture but also provide a holistic view of the status and prospects of NS reliability, taking into account the challenges posed by future scaling.