Talk

AutoPeptideML 2: An open source library for democratizing machine learning for peptide bioactivity prediction

Abstract

Peptides are a rapidly growing drug modality with diverse bioactivities and accessible synthesis, particularly for canonical peptides composed of the 20 standard amino acids. However, enhancing their pharmacological properties often requires chemical modifications, increasing synthesis cost and complexity. Consequently, most existing data and predictive models focus on canonical peptides. To accelerate the development of peptide drugs, there is a need for models that generalize from canonical to non-canonical peptides.

We present AutoPeptideML, an open-source, user-friendly machine learning platform designed to bridge this gap. It empowers experimental scientists to build custom predictive models without specialized computational knowledge, enabling active learning workflows that optimize experimental design and reduce sample requirements. AutoPeptideML introduces key innovations: (1) preprocessing pipelines for harmonizing diverse peptide formats (e.g., sequences, SMILES); (2) automated sampling of negative peptides with matched physicochemical properties; (3) robust test set selection with multiple similarity functions (via the Hestia-GOOD framework); (4) flexible model building with multiple representation and algorithm choices; (5) thorough model evaluation for unseen data at multiple similarity levels; and (6) FAIR-compliant, interpretable outputs to support reuse and sharing. A webserver with GUI enhances accessibility and interoperability.

We validated AutoPeptideML on 18 peptide bioactivity datasets and found that automated negative sampling and rigorous evaluation reduce overestimation of model performance, promoting user trust. A follow-up investigation also highlighted the current limitations in extrapolating from canonical to non-canonical peptides using existing representation methods.

AutoPeptideML is a powerful platform for democratizing machine learning in peptide research, facilitating integration with experimental workflows across academia and industry.