Lawrence Suchow, Norman R. Stemple
JES
The surface band gap of the Ge (111) c (2×8) surface at low temperature is determined on the basis of scanning tunneling spectroscopy. Electrostatic potential computations permit evaluation of tip-induced band bending, from which a correction to the energy scale of the observed spectra is made. Parameter values in the computations are constrained by comparison of the observed spectrum with known spectral features, including high-lying conduction band features derived from first-principles computations. The surface band gap, lying between the bulk valence band maximum and the minimum of an adatom-induced surface band, is found to have a width of 0.49±0.03 eV. © 2006 The American Physical Society.
Lawrence Suchow, Norman R. Stemple
JES
Heinz Schmid, Hans Biebuyck, et al.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992
Dipanjan Gope, Albert E. Ruehli, et al.
IEEE T-MTT