Ronen Feldman, Martin Charles Golumbic
Ann. Math. Artif. Intell.
Let A be a normal matrix with eigenvalues λ1, λ2,..., λn, and let G{cyrillic} denote the smallest disc containing these eigenvalues. We give some inequalities relating the center and radius of G{cyrillic} to the entries in A. When applied to Hermitian matrices our results give lower bounds on the spread maxij(λi - λj) of A. When applied to positive definite Hermitian matrices they give lower bounds on the Kantorovich ratio maxij(λi - λj)/(λi + λj). © 1994.
Ronen Feldman, Martin Charles Golumbic
Ann. Math. Artif. Intell.
Fausto Bernardini, Holly Rushmeier
Proceedings of SPIE - The International Society for Optical Engineering
Fernando Martinez, Juntao Chen, et al.
AAAI 2025
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering