Conference paper
Bonding, interfacial effects and adhesion in dlc
A. Grill, B.S. Meyerson, et al.
Proceedings of SPIE 1989
We estimate the probability that a given number of projective Newton steps applied to a linear homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function theorem and revisit the condition number in this context. Further complexity theory is developed.
A. Grill, B.S. Meyerson, et al.
Proceedings of SPIE 1989
Martin C. Gutzwiller
Physica D: Nonlinear Phenomena
Satoshi Hada
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering