Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
In this paper, we focus on diagnosis in distributed computer systems using end-to-end transactions, or probes. Diagnostic problem is formulated as a probabilistic inference in a bipartite noisy-OR Bayesian network. Due to general intractability of exact inference in such networks, we apply belief propagation (BP), a popular approximation technique proven successful in various applications, from image analysis to probabilistic decoding. Another attractive property of BP for our application is it natural parallelism that allows a distributed implementation of diagnosis in a distributed system to improve diagnostic speed and robustness. We derive lower bounds for diagnostic error in bipartite Bayesian networks, and particularly in noisy-OR networks, and provide promising empirical results for belief propagation on both randomly generated and realistic noisy-OR problems.
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Pradip Bose
VTS 1998
Raymond Wu, Jie Lu
ITA Conference 2007
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum