Group sparse CNNs for question classification with answer sets
Mingbo Ma, Liang Huang, et al.
ACL 2017
Empty categories (EC) are artificial elements in Penn Treebanks motivated by the government-binding (GB) theory to explain certain language phenomena such as pro-drop. ECs are ubiquitous in languages like Chinese, but they are tacitly ignored in most machine translation (MT) work because of their elusive nature. In this paper we present a comprehensive treatment of ECs by first recovering them with a structured MaxEnt model with a rich set of syntactic and lexical features, and then incorporating the predicted ECs into a Chinese-to-English machine translation task through multiple approaches, including the extraction of EC-specific sparse features. We show that the recovered empty categories not only improve the word alignment quality, but also lead to significant improvements in a large-scale state-of-the-art syntactic MT system. © 2013 Association for Computational Linguistics.
Mingbo Ma, Liang Huang, et al.
ACL 2017
Bowen Zhou, Bing Xiang, et al.
SSST 2008
Mo Yu, Wenpeng Yin, et al.
ACL 2017
Jia Cui, Yonggang Deng, et al.
ASRU 2009