David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence
This paper advances descriptor-based face recognition by suggesting a novel usage of descriptors to form an over-complete representation, and by proposing a new metric learning pipeline within the same/not-same framework. First, the Over-Complete Local Binary Patterns (OCLBP) face representation scheme is introduced as a multi-scale modified version of the Local Binary Patterns (LBP) scheme. Second, we propose an efficient matrix-vector multiplication-based recognition system. The system is based on Linear Discriminant Analysis (LDA) coupled with Within Class Covariance Normalization (WCCN). This is further extended to the unsupervised case by proposing an unsupervised variant of WCCN. Lastly, we introduce Diffusion Maps (DM) for non-linear dimensionality reduction as an alternative to the Whitened Principal Component Analysis (WPCA) method which is often used in face recognition. We evaluate the proposed framework on the LFW face recognition dataset under the restricted, unrestricted and unsupervised protocols. In all three cases we achieve very competitive results. © 2013 IEEE.
David W. Jacobs, Daphna Weinshall, et al.
IEEE Transactions on Pattern Analysis and Machine Intelligence
Minerva M. Yeung, Fred Mintzer
ICIP 1997
Graham Mann, Indulis Bernsteins
DIMEA 2007
Fearghal O'Donncha, Albert Akhriev, et al.
Big Data 2021