Magnús M. Halldórsson, Kazuo Iwama, et al.
Theoretical Computer Science
Given an n-vertex graph with nonnegative edge weights and a positive integer k ≤ n, our goal is to find a k-vertex subgraph with the maximum weight. We study the following greedy algorithm for this problem: repeatedly remove a vertex with the minimum weighted-degree in the currently remaining graph, until exactly k vertices are left. We derive tight bounds on the worst case approximation ratio R of this greedy algorithm: (1/2 + n/2k)2 - O(n-1/3) ≤ R ≤ (1/2 + n/2k)2 + O(1/n) for k in the range n/3 ≤ k ≤ n and 2(n/k - 1) - O(1/k) ≤ R ≤ 2(n/k - 1) + O(n/k2) for k < n/3. For k = n/2, for example, these bounds are 9/4 ± 0(1/n), improving on naive lower and upper bounds of 2 and 4, respectively. The upper bound for general k compares well with currently the best (and much more complicated) approximation algorithm based on semidefinite programming. © 2000 Academic Press.
Magnús M. Halldórsson, Kazuo Iwama, et al.
Theoretical Computer Science
Hisao Tamaki
SPAA 1994
Anna R. Karlin, Greg Nelson, et al.
STOC 1994
Nader H. Bshouty, Sally A. Goldman, et al.
Journal of the ACM