C.A. Micchelli, W.L. Miranker
Journal of the ACM
Verification is the final decision stage in many object recognition processes. It is carried out by evaluating a score for every hypothesis and choosing the hypotheses associated with the highest score. This paper suggests a grouping-based verification paradigm relying on the observation that a group of data features belonging to a hypothesized object instance should be a good group. Therefore it should support perceptual grouping information available from the image by grouping relations. The proposed score which is the joint likelihood of these grouping cues quantifies this observation in a probabilistic framework. Experiments with synthetic and real images show that the proposed method performs better in difficult cases. © 1998 IEEE.
C.A. Micchelli, W.L. Miranker
Journal of the ACM
Guojing Cong, David A. Bader
Journal of Parallel and Distributed Computing
Barry K. Rosen
SWAT 1972
Gaku Yamamoto, Hideki Tai, et al.
AAMAS 2008