Vladimir Yanovski, Israel A. Wagner, et al.
Ann. Math. Artif. Intell.
The integral transform, F( mu , nu )= integral -infinityinfinity D( eta mu , eta + nu ) exp(i mu eta 2)d eta applied to functions D(x, y) on the plane, arises when one applies tomographic reconstruction techniques to problems in radar detection. The authors show that this transform can be inverted to reconstruct the superposition D+D composed with A, where A is a fixed linear transformation of the plane. In the case relevant to applications, where D(x, y) is real valued and vanishes on the half plane x<0, D itself can be reconstructed.
Vladimir Yanovski, Israel A. Wagner, et al.
Ann. Math. Artif. Intell.
Fausto Bernardini, Holly Rushmeier
Proceedings of SPIE - The International Society for Optical Engineering
Sankar Basu
Journal of the Franklin Institute
Leo Liberti, James Ostrowski
Journal of Global Optimization