Sentiment Aggregation using ConceptNet Ontology
Subhabrata Mukherjee, Sachindra Joshi
IJCNLP 2013
This paper proposes state-of-the-art models for time-event relation extraction (TERE). The models are specifically designed to work effectively with relations that span multiple sentences and paragraphs, i.e., inter-sentence TERE. Our main idea is: (i) to build a computational representation of the context of the two target relation arguments, and (ii) to encode it as structural features in Support Vector Machines using tree kernels. Results on two data sets – Machine Reading and TimeBank – with 3-fold cross-validation show that the combination of traditional feature vectors and the new structural features improves on the state of the art for inter-sentence TERE by about 20%, achieving a 30.2 F1 score on inter-sentence TERE alone, and 47.2 F1 for all TERE (inter and intra sentence combined).
Subhabrata Mukherjee, Sachindra Joshi
IJCNLP 2013
Dzung Phan, Vinicius Lima
INFORMS 2023
Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
Hagen Soltau, Lidia Mangu, et al.
ASRU 2011