Jing Xi, Ruriko Yoshida, et al.
Annals of the Institute of Statistical Mathematics
Whole genome prediction of complex phenotypic traits using high-density genotyping arrays has attracted a lot of attention, as it is relevant to the fields of plant and animal breeding and genetic epidemiology. Since the number of genotypes is generally much bigger than the number of samples, predictive models suffer from the curse of dimensionality. The curse of dimensionality problem not only affects the computational efficiency of a particular genomic selection method, but can also lead to a poor performance, mainly due to possible overfitting, or un-informative features. In this work, we propose a novel transductive feature selection method, called MINT, which is based on the MRMR (Max-Relevance and Min-Redundancy) criterion. We apply MINT on genetic trait prediction problems and show that, in general, MINT is a better feature selection method than the state-of-the-art inductive method MRMR.
Jing Xi, Ruriko Yoshida, et al.
Annals of the Institute of Statistical Mathematics
Alina Beygelzimer, Irina Rish
NeurIPS 2003
Dan He, Laxmi Parida
BMC Bioinformatics
Irina Rish, Genady Grabarnik, et al.
ICML 2008