Shivashankar Subramanian, Ioana Baldini, et al.
IAAI 2020
Self-supervised pre-trained models have consistently delivered state-of-art results in the fields of natural language and speech processing. However, we argue that their merits for modeling Turn-Taking for spoken dialogue systems still need further investigation. Due to that, in this paper we introduce a modular End-to-End system based on an Upstream + Downstream architecture paradigm, which allows easy use/integration of a large variety of self-supervised features to model the specific Turn-Taking task of End-of-Turn Detection (EOTD). Several architectures to model the EOTD task. using audio-only, text-only and audio+text modalities are presented, and their performance and robustness are carefully evaluated for three different human-to-human spoken dialogue datasets. The proposed model not only achieves SOTA results for EOTD, but also brings light to the possibility of powerful and well fine-tuned self-supervised models to be successfully used for a wide variety Turn-Taking tasks.
Shivashankar Subramanian, Ioana Baldini, et al.
IAAI 2020
Gabriele Picco, Lam Thanh Hoang, et al.
EMNLP 2021
Kevin Gu, Eva Tuecke, et al.
ICML 2024
Hui Wan, Song Feng, et al.
NAACL 2021