P. Martensson, R.M. Feenstra
Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
Defects introduced by reactive-ion etching (RIE) and plasma etching (PE) using deuterium have been studied in boron-doped silicon with the photoluminescence (PL) technique. We have observed a set of broad luminescence bands in the below-bandgap range between 1.05 and 0.8 eV. These bands change in intensity as well as in photon energy with annealing. We attribute all these PL bands to electron-hole recombination in heavily damaged regions, where electrons and holes can be localized in potential wells caused by the strain surrounding the microscopic hydrogen defects. © 1989.
P. Martensson, R.M. Feenstra
Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
J.V. Harzer, B. Hillebrands, et al.
Journal of Magnetism and Magnetic Materials
Thomas H. Baum, Carl E. Larson, et al.
Journal of Organometallic Chemistry
Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering