Quantum-centric supercomputing: an application overview
Max Rossmannek, Iskandar Sitdikov, et al.
ISC 2024
Quantum chemistry simulations of some industrially relevant molecules are reported, employing variational quantum algorithms for near-term quantum devices. The energies and dipole moments are calculated along the dissociation curves for lithium hydride (LiH), hydrogen sulfide, lithium hydrogen sulfide, and lithium sulfide. In all cases, we focus on the breaking of a single bond to obtain information about the stability of the molecular species being investigated. We calculate energies and a variety of electrostatic properties of these molecules using classical simulators of quantum devices, with up to 21 qubits for lithium sulfide. Moreover, we calculate the ground-state energy and dipole moment along the dissociation pathway of LiH using IBM quantum devices. This is the first example, to the best of our knowledge, of dipole moment calculations being performed on quantum hardware.
Max Rossmannek, Iskandar Sitdikov, et al.
ISC 2024
Alexandre Choquette, Agustin Di Paolo, et al.
APS March Meeting 2020
Aleksandros Sobczyk
ACS Spring 2024
Oscar Wallis, Stefano Mensa, et al.
QCE 2025