Amarachi Blessing Mbakwe, Joy Wu, et al.
NeurIPS 2023
Let X be a data matrix of rank ρ, representing n points in d-dimensional space. The linear support vector machine constructs a hyperplane separator that maximizes the 1- norm soft margin. We develop a new oblivious dimension reduction technique which is precomputed and can be applied to any input matrix X. We prove that, with high probability, the margin and minimum enclosing ball in the feature space are preserved to within ε-relative error, ensuring comparable generalization as in the original space. We present extensive experiments with real and synthetic data to support our theory.
Amarachi Blessing Mbakwe, Joy Wu, et al.
NeurIPS 2023
Sashi Novitasari, Takashi Fukuda, et al.
INTERSPEECH 2025
Amy Lin, Sujit Roy, et al.
AGU 2024
Michael Muller, Anna Kantosalo, et al.
CHI 2024