Control Flow Operators in PyTorch
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
We design a learning and optimization framework to mitigate greenhouse gas emissions associated with heating and cooling buildings. The framework optimizes room temperature set-points based on forecasts of weather, occupancy, and the greenhouse gas intensity of electricity. We compare two approaches: the first one combines a linear load forecasting model with convex optimization that offers a globally optimal solution, whereas the second one combines a nonlinear load forecasting model with nonconvex optimization that offers a locally optimal solution. The project explores the two approaches with a simulation testbed in EnergyPlus and experiments in university-campus buildings.
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Gosia Lazuka, Andreea Simona Anghel, et al.
SC 2024
Natalia Martinez Gil, Dhaval Patel, et al.
UAI 2024
Shubhi Asthana, Pawan Chowdhary, et al.
KDD 2021