Dzung Phan, Vinicius Lima
INFORMS 2023
The least squares support vector machine (LS-SVM), like the SVM, is based on the margin-maximization performing structural risk and has excellent power of generalization. In this paper, we consider its use in semisupervised learning. We propose two algorithms to perform this task deduced from the transductive SVM idea. Algorithm 1 is based on combinatorial search guided by certain heuristics while Algorithm 2 iteratively builds the decision function by adding one unlabeled sample at the time. In term of complexity, Algorithm 1 is faster but Algorithm 2 yields a classifier with a better generalization capacity with only a few labeled data available. Our proposed algorithms are tested in several benchmarks and give encouraging results, confirming our approach. © 2009 IEEE.
Dzung Phan, Vinicius Lima
INFORMS 2023
Barry K. Rosen
SWAT 1972
Kellen Cheng, Anna Lisa Gentile, et al.
EMNLP 2024
Tim Erdmann, Stefan Zecevic, et al.
ACS Spring 2024