A platform for massive agent-based simulation and its evaluation
Gaku Yamamoto, Hideki Tai, et al.
AAMAS 2008
In crowded scenes, the extracted low-level features, such as optical flow or spatio-temporal interest point, are inevitably noisy and uncertainty. In this paper, we propose a fully unsupervised non-negative sparse coding based approach for abnormality event detection in crowded scenes, which is specifically tailored to cope with feature noisy and uncertainty. The abnormality of query sample is decided by the sparse reconstruction cost from an atomically learned event dictionary, which forms a sparse coding bases. In our algorithm, we formulate the task of dictionary learning as a non-negative matrix factorization (NMF) problem with a sparsity constraint. We take the robust Earth Mover's Distance (EMD), instead of traditional Euclidean distance, as distance metric reconstruction cost function. To reduce the computation complexity of EMD, an approximate EMD, namely wavelet EMD, is introduced and well combined into our approach, without losing performance. In addition, the combination of wavelet EMD with our approach guarantees the convexity of optimization in dictionary learning. To handle both local abnormality detection (LAD) and global abnormality detection, we adopt two different types of spatio-temporal basis. Experiments conducted on four public available datasets demonstrate the promising performance of our work against the state-of-the-art methods. © 2013 Elsevier Ltd. All rights reserved.
Gaku Yamamoto, Hideki Tai, et al.
AAMAS 2008
Aditya Malik, Nalini Ratha, et al.
CAI 2024
Arnold L. Rosenberg
Journal of the ACM
Yi Zhou, Parikshit Ram, et al.
ICLR 2023