O.F. Schirmer, W. Berlinger, et al.
Solid State Communications
Kinetics of phase separation at the air/polymer interface in a binary polymer mixture on evaporation of common solvent is studied. The lateral dimension of the highly anisotropic, pancake-like, minority phase increases with a growth exponent of 2/3, identical to "late-stage" growth under (classical) thermal quench at interface. The "wetting-layer" formed at the surface is directly visualized using atomic force microscopy. In contrast to the thermal quench, during drying the kinetics depends on the initial condition (i.e., initial concentration, c0) that is resealed to obtain a master curve.
O.F. Schirmer, W. Berlinger, et al.
Solid State Communications
S.F. Fan, W.B. Yun, et al.
Proceedings of SPIE 1989
Kafai Lai, Alan E. Rosenbluth, et al.
SPIE Advanced Lithography 2007
R. Ghez, J.S. Lew
Journal of Crystal Growth