Compression for data archiving and backup revisited
Corneliu Constantinescu
SPIE Optical Engineering + Applications 2009
The temperature dependence of low-energy electron diffraction (LEED) intensities has often been interpreted with kinematic theory in terms of an effective Debye temperature θDeff of the surface atoms. The validity of this procedure, often questioned in the literature, is tested with a computer experiment in which LEED spectra are calculated from dynamical theory (layer-KKR method) for a model of Ag{111} with a given value of θDeff and then the usual kinematic formulae are used to re-extract the value of θDeff. The results of the experiment indicate that this procedure yields rough values of the surface Debye temperature for electron energies higher than about 40 eV, which fluctuate substantially and tend to be somewhat smaller than that originally introduced into the model. At energies lower than about 40 eV the kinematically deduced values of θDeff are too large by 10 to 15 %. © 1974.
Corneliu Constantinescu
SPIE Optical Engineering + Applications 2009
Fernando Marianno, Wang Zhou, et al.
INFORMS 2021
William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010
Frank Stem
C R C Critical Reviews in Solid State Sciences