Jey Han Lau, Alexander Clark, et al.
Cognitive Science
Topic coherence is increasingly being used to evaluate topic models and filter topics for end-user applications. Topic coherence measures how well topic words relate to each other, but offers little insight into the utility of the topics in describing the documents. In this paper, we explore the topic intrusion task - the task of guessing an outlier topic given a document and a set of topics - and propose a method to automate it. We improve upon the state-of-the-art substantially, demonstrating its viability as an alternative method for topic model evaluation.
Jey Han Lau, Alexander Clark, et al.
Cognitive Science
Khoi Nguyen Tran, Jey Han Lau, et al.
EDM 2018
Jean-Philippe Bernardy, Shalom Lappin, et al.
ACL 2018
Michael Boratko, Harshit Padigela, et al.
EMNLP 2018