Pruning and dynamic scheduling of cost-sensitive ensembles
Wei Fan, Fang Chu, et al.
AAAI/IAAI 2002
Intrusion detection systems (IDSs) must maximize the realization of security goals while minimizing costs. In this paper, we study the problem of building cost-sensitive intrusion detection models. We examine the major cost factors associated with an IDS, which include development cost, operational cost, damage cost due to successful intrusions, and the cost of manual and automated response to intrusions. These cost factors can be qualified according to a defined attack taxonomy and site-specific security policies and priorities. We define cost models to formulate the total expected cost of an IDS, and present cost-sensitive machine learning techniques that can produce detection nodels that are optimized for user-defined cost metrics. Empirical experiments show that our cost-sensitive modeling and deployment techniques are effective in reducing the overall cost of intrusion detection.
Wei Fan, Fang Chu, et al.
AAAI/IAAI 2002
Xian Wu, Wei Fan, et al.
AAAI/IAAI 2012
Bo Wang, Jie Tang, et al.
KAIS
Wenke Lee, S.J. Stolfo, et al.
DISCEX 2001