Association control in mobile wireless networks
Minkyong Kim, Zhen Liu, et al.
INFOCOM 2008
Breast cancer accounts for about 30% of all cancers and 15% of cancer deaths in women. Advances in computer-assisted analysis hold promise for classifying subtypes of disease and improving prognostic accuracy. We introduce a grid-enabled decision support system for performing automatic analysis of imaged breast tissue microarrays. To date, we have processed more than 100 000 digitized specimens (1200 × 1200 pixels each) on IBM's World Community Grid (WCG). As a part of the Help Defeat Cancer (HDC) project, we have analyzed that the data returned from WCG along with retrospective patient clinical profiles for a subset of 3744 breast tissue samples, and have reported the results in this paper. Texture-based features were extracted from the digitized specimens, and isometric feature mapping was applied to achieve nonlinear dimension reduction. Iterative prototyping and testing were performed to classify several major subtypes of breast cancer. Overall, the most reliable approach was gentle AdaBoost using an eight-node classification and regression tree as the weak learner. Using the proposed algorithm, a binary classification accuracy of 89% and the multiclass accuracy of 80% were achieved. Throughout the course of the experiments, only 30% of the dataset was used for training. © 2009 IEEE.
Minkyong Kim, Zhen Liu, et al.
INFOCOM 2008
Donald Samuels, Ian Stobert
SPIE Photomask Technology + EUV Lithography 2007
Yigal Hoffner, Simon Field, et al.
EDOC 2004
Sonia Cafieri, Jon Lee, et al.
Journal of Global Optimization