Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering
The knapsack problem with special ordered sets and arbitrarily signed coefficients is shown to be equivalent to a standard problem of the same type but having all coefficients positive. Two propositions are proven which define an algorithm for the linear programming relaxation of the standard problem that is a natural generalization of the Dantzig solution to the problem without special ordered sets/ Several properties of the corvex hull of the associated zero-one polytope are derived. © 1981.
Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering
Satoshi Hada
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Peter Wendt
Electronic Imaging: Advanced Devices and Systems 1990
M.B. Small, R.M. Potemski
Proceedings of SPIE 1989