True 3-D displays for avionics and mission crewstations
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
The problem of constructing the suffix tree of a tree is a generalization of the problem of constructing the suffix tree of a string. It has many applications, such as in minimizing the size of sequential transducers and in tree pattern matching. The best-known algorithm for this problem is Breslauer's O(n log |Σ|) time algorithm where n is the size of the CS-tree and |Σ| is the alphabet size, which requires O(n log n) time if |Σ| is large. We improve this bound by giving an optimal linear time algorithm for integer alphabets. We also describe a new data structure, the Bsuffix tree, which enables efficient query for patterns of completely balanced k-ary trees from a k-ary tree or forest. We also propose an optimal O(n) algorithm for constructing the Bsurffix tree for integer alphabets.
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
H.O. Posten
Technometrics
E.F. Sarkany, W. Liniger
Mathematics of Computation
Nathalie Casati, Maria Gabrani, et al.
SPIE Advanced Lithography 2014