Andrew Eddins, Tanvi Gujarati, et al.
APS March Meeting 2021
Fixed-frequency transmon qubits are attractive due to noise immunity and high coherence. However, as quantum processors are scaled, frequency crowding resulting from level degeneracies reduces two-qubit gate fidelity [1]. We implement a scalable laser-based frequency trimming technique that has been implemented on processors at the 65-qubit scale, enabling low-error gates with average fidelities approaching 99%. We discuss ultimate tuning precision of the method and its consequences for processor scaling.
[1] J. Hertzberg, S. Rosenblatt, J. Chavez, E. Magesan, J. Smolin, J. B. Yau, V. Adiga, M. Brink, E. Zhang, J. Orcutt, J. Chow, “Effects of qubit frequency crowding on scalable quantum processors.” Bulletin of the American Physical Society. 65, Mar 5, 2020 *We acknowledge support for modeling work under IARPA under Contract No. W911NF-16-0114
Andrew Eddins, Tanvi Gujarati, et al.
APS March Meeting 2021
Jiri Stehlik, David Zajac, et al.
APS March Meeting 2021
Guglielmo Mazzola, Simon Mathis, et al.
APS March Meeting 2021
Pauline J. Ollitrault, Abhinav Kandala, et al.
PRResearch