Wavefront and caustic surfaces of refractive laser beam shaper
David L. Shealy, John A. Hoffnagle
SPIE Optical Engineering + Applications 2007
Let G = (V, E) be any d-regular graph with girth g on n vertices, for d ≥ 3. This note shows that G has a maximum matching which includes all but an exponentially small fraction of the vertices, O((d - 1)-g/2). Specifically, in a maximum matching of G, the number of unmatched vertices is at most n/n0(d, g), where n0(d, g) is the number of vertices in a ball of radius [(g - 1)/2] around a vertex, for odd values of g, and around an edge, for even values of g. This result is tight if n < 2n 0(d, g).
David L. Shealy, John A. Hoffnagle
SPIE Optical Engineering + Applications 2007
Karthik Visweswariah, Sanjeev Kulkarni, et al.
IEEE International Symposium on Information Theory - Proceedings
W.C. Tang, H. Rosen, et al.
SPIE Optics, Electro-Optics, and Laser Applications in Science and Engineering 1991
Charles Micchelli
Journal of Approximation Theory