Ellen J. Yoffa, David Adler
Physical Review B
Materials with nanometer size heterogeneities are commonplace in the chemical and biological sciences (e.g, polymer blends, microemulsions, gels) and often exhibit complex morphologies. Although this morphology has a dramatic effect on the materials' properties, it is often difficult to accurately characterize. We describe a method, using small-angle X-ray scattering data, of generating representative three-dimensional morphologies of isotropic two-phase materials where the morphology is disordered, and we apply this to thin films containing nanometer sized pores with a range of porosities (4 - 44%). These representations provide a visualization of the pore morphology, give the pore size scale and extent of interconnection, and permit the determination of the transitions from closed pore to interconnected pores to bicontinuous morphology.