R.W. Gammon, E. Courtens, et al.
Physical Review B
Ultrahigh storage densities of up to 1 Tb/in.2 or more can be achieved by using local-probe techniques to write, read back, and erase data in very thin polymer films. The thermomechanical scanning-probe-based data-storage concept, internally dubbed "millipede", combines ultrahigh density, small form factor, and high data rates. High data rates are achieved by parallel operation of large 2D arrays with thousands micro-/nanomechanical cantilevers/tips that can be batch-fabricated by silicon surface-micromachining techniques. The inherent parallelism, the ultrahigh areal densities and the small form factor may open up new perspectives and opportunities for application in areas beyond those envisaged today.
R.W. Gammon, E. Courtens, et al.
Physical Review B
Z. Ren, M.V. Fischetti, et al.
IEDM 2003
R.M. Macfarlane, R.L. Cone
Physical Review B - CMMP
I. Morgenstern, K.A. Müller, et al.
Physica B: Physics of Condensed Matter